Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics.

نویسندگان

  • Arpana Vaniya
  • Oliver Fiehn
چکیده

Identification of unknown metabolites is the bottleneck in advancing metabolomics, leaving interpretation of metabolomics results ambiguous. The chemical diversity of metabolism is vast, making structure identification arduous and time consuming. Currently, comprehensive analysis of mass spectra in metabolomics is limited to library matching, but tandem mass spectral libraries are small compared to the large number of compounds found in the biosphere, including xenobiotics. Resolving this bottleneck requires richer data acquisition and better computational tools. Multi-stage mass spectrometry (MSn) trees show promise to aid in this regard. Fragmentation trees explore the fragmentation process, generate fragmentation rules and aid in sub-structure identification, while mass spectral trees delineate the dependencies in multi-stage MS of collision-induced dissociations. This review covers advancements over the past 10 years as a tool for metabolite identification, including algorithms, software and databases used to build and to implement fragmentation trees and mass spectral annotations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fragmentation trees reloaded

BACKGROUND Untargeted metabolomics commonly uses liquid chromatography mass spectrometry to measure abundances of metabolites; subsequent tandem mass spectrometry is used to derive information about individual compounds. One of the bottlenecks in this experimental setup is the interpretation of fragmentation spectra to accurately and efficiently identify compounds. Fragmentation trees have beco...

متن کامل

MetiTree: a web application to organize and process high-resolution multi-stage mass spectrometry metabolomics data

UNLABELLED Identification of metabolites using high-resolution multi-stage mass spectrometry (MS(n)) data is a significant challenge demanding access to all sorts of computational infrastructures. MetiTree is a user-friendly, web application dedicated to organize, process, share, visualize and compare MS(n) data. It integrates several features to export and visualize complex MS(n) data, facilit...

متن کامل

Fragmentation trees for the structural characterisation of metabolites

Metabolite identification plays a crucial role in the interpretation of metabolomics research results. Due to its sensitivity and widespread implementation, a favourite analytical method used in metabolomics is electrospray mass spectrometry. In this paper, we demonstrate our results in attempting to incorporate the potentials of multistage mass spectrometry into the metabolite identification r...

متن کامل

Computational Analyses of Spectral Trees from Electrospray Multi-Stage Mass Spectrometry to Aid Metabolite Identification

Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced...

متن کامل

Fast alignment of fragmentation trees

MOTIVATION Mass spectrometry allows sensitive, automated and high-throughput analysis of small molecules such as metabolites. One major bottleneck in metabolomics is the identification of 'unknown' small molecules not in any database. Recently, fragmentation tree alignments have been introduced for the automated comparison of the fragmentation patterns of small molecules. Fragmentation pattern ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Trends in analytical chemistry : TRAC

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2015